不相关和相互独立的区别(不相关和相互独立有什么区别)
64百科网回答:不相关和独立的区别:不相关就是两者没有线性关系,但是不排除其它关系存在;独立就是互不相干没有关联。独立一定不相关,不相关不一定独立(高斯过程里二者等价)。
不相关和独立在随机变量中的区别:
假设X为一个随机过程,则在t1和t2时刻的随机变量的相关定义如下(两个随机过程一样):
(1)定义Kx(t1,t2)=E{[X(t1)-Mx(t1)][X(t2)-Mx(t2)]}为协方差函数,若K=0,即相关系数为0,则称之为不相关;不相关只是说二者没有线形关系,但并不代表没有任何关系。
(2)独立,就用他们的概率分布函数或密度来表达。联合分布等于他们各自分布的乘积,独立的定义是 F(x,Y)=F(x)F(Y),就称独立。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 1543321114@qq.com 举报,一经查实,本站将立刻删除。